Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech.
نویسندگان
چکیده
Hierarchical organization of human auditory cortex has been inferred from functional imaging observations that core regions respond to simple stimuli (tones) whereas downstream regions are selectively responsive to more complex stimuli (band-pass noise, speech). It is assumed that core regions code low-level features, which are combined at higher levels in the auditory system to yield more abstract neural codes. However, this hypothesis has not been critically evaluated in the auditory domain. We assessed sensitivity to acoustic variation within intelligible versus unintelligible speech using functional magnetic resonance imaging and a multivariate pattern analysis. Core auditory regions on the dorsal plane of the superior temporal gyrus exhibited high levels of sensitivity to acoustic features, whereas downstream auditory regions in both anterior superior temporal sulcus and posterior superior temporal sulcus (pSTS) bilaterally showed greater sensitivity to whether speech was intelligible or not and less sensitivity to acoustic variation (acoustic invariance). Acoustic invariance was most pronounced in more pSTS regions of both hemispheres, which we argue support phonological level representations. This finding provides direct evidence for a hierarchical organization of human auditory cortex and clarifies the cortical pathways supporting the processing of intelligible speech.
منابع مشابه
The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives
An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to ...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملHierarchical Processing for Speech in Human Auditory Cortex and Beyond
The anatomical connectivity of the primate auditory system suggests that sound perception involves several hierarchical stages of analysis (Kaas et al., 1999), raising the question of how the processes required for human speech comprehension might map onto such a system. One intriguing possibility is that earlier areas of auditory cortex respond to acoustic differences in speech stimuli, but th...
متن کاملPhase-Locked Responses to Speech in Human Auditory Cortex are Enhanced During Comprehension
A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligibl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 20 10 شماره
صفحات -
تاریخ انتشار 2010